Mixed Strong Form Representation Particle Method for Solids and Structures
نویسندگان
چکیده مقاله:
In this paper, a generalized particle system (GPS) method, a general method to describe multiple strong form representation based particle methods is described. Gradient, divergence, and Laplacian operators used in various strong form based particle method such as moving particle semi-implicit (MPS) method, smooth particle hydrodynamics (SPH), and peridynamics, can be described by the GPS method with proper selection of parameters. In addition, the application of mixed formulation representation to the GPS method is described. Based on Hu-Washizu principle and Hellinger-Reissner principle, the mixed form refers to the method solving multiple primary variables such as displacement, strain and stress, simultaneously in the FEM method; however for convenience in employing FEM with particle methods, a simple representation in construction only is shown. It is usually applied to finite element method (FEM) to overcome numerical errors including locking issues. While the locking issues do not arise in strong form based particle methods, the mixed form representation in construction only concept applied to GPS method can be the first step for fostering coupling of multi-domain problems, coupling mixed form FEM and mixed form representation GPS method; however it is to be noted that the standard GPS particle method and the mixed for representation construction GPS particle method are equivalent. Two dimensional simple bar and beam problems are presented and the results from mixed form GPS method is comparable to the mixed form FEM results.
منابع مشابه
The MLPG Mixed Collocation Method for Material Orientation and Topology Optimization of Anisotropic Solids and Structures
In this paper, a method based on a combination of an optimization of directions of orthotropy, along with topology optimization, is applied to continuum orthotropic solids with the objective of minimizing their compliance. The spatial discretization algorithm is the so called Meshless Local Petrov-Galerkin (MLPG) “mixed collocation” method for the design domain, and the material-orthotropy orie...
متن کاملA Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations
This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...
متن کاملAlgebraic Representation of CSG Solids Built from Free-Form Primitives
A mathematical model for free-form solid modelling was presented in previous published works. The key aspects of this model are the decomposition of the volume occupied by the solid into non-disjoint cells, and the representation of the solid as an algebraic sum of these cells. Here we apply this scheme to represent CSG solids built by combining free-form solids in boolean operations. As a proo...
متن کاملHYBRID PARTICLE SWARM OPTIMIZATION, GRID SEARCH METHOD AND UNIVARIATE METHOD TO OPTIMALLY DESIGN STEEL FRAME STRUCTURES
This paper combines particle swarm optimization, grid search method and univariate method as a general optimization approach for any type of problems emphasizing on optimum design of steel frame structures. The new algorithm is denoted as the GSU-PSO. This method attempts to decrease the search space and only searches the space near the optimum point. To achieve this aim, the whole search space...
متن کاملA Particle Swarm Optimization Algorithm for Mixed-Variable Nonlinear Problems
Many engineering design problems involve a combination of both continuous anddiscrete variables. However, the number of studies scarcely exceeds a few on mixed-variableproblems. In this research Particle Swarm Optimization (PSO) algorithm is employed to solve mixedvariablenonlinear problems. PSO is an efficient method of dealing with nonlinear and non-convexoptimization problems. In this paper,...
متن کاملFunction Representation of Solids
This paper presents a novel approach to the reconstruction of geometric models and surfaces from given sets of points using volume splines. It results in the representation of a solid by the inequality f(x; y; z) 0. The volume spline is based on use of the Green's function for interpolation of scalar function values of a chosen "carrier" solid. Our algorithm is capable of generating highly conc...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 4 شماره Special Issue: Applied and Computational Issues in Structural Engineering
صفحات 429- 441
تاریخ انتشار 2018-11-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023